Stability preservation in stochastic Galerkin projections of dynamical systems
نویسندگان
چکیده
In uncertainty quantification, critical parameters of mathematical models are substituted by random variables. We consider dynamical systems composed of ordinary differential equations. The unknown solution is expanded into an orthogonal basis of the random space, e.g., the polynomial chaos expansions. A Galerkin method yields a numerical solution of the stochastic model. In the linear case, the Galerkin-projected system may be unstable, even though all realizations of the original system are asymptotically stable. We derive a basis transformation for the state variables in the original system, which guarantees a stable Galerkin-projected system. The transformation matrix is obtained from a symmetric decomposition of a solution of a Lyapunov equation. In the nonlinear case, we examine stationary solutions of the original system. Again the basis transformation preserves the asymptotic stability of the stationary solutions in the stochastic Galerkin projection. We present results of numerical computations for both a linear and a nonlinear test example.
منابع مشابه
Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کامل8 N ov 2 01 7 Stability preservation in Galerkin - type projection - based model order reduction
We consider linear dynamical systems consisting of ordinary differential equations with high dimensionality. The aim of model order reduction is to construct an approximating system of a much lower dimension. Therein, the reduced system may be unstable, even though the original system is asymptotically stable. We focus on projection-based model order reduction of Galerkin-type. A transformation...
متن کاملInvestigation of Dynamical Behavior (Transverse Vibration) and Instability Analysis of Carbon Nanotubes Conveying Nanofluid
This work focuses on the dynamical behavior of carbon nanotubes, including vibration, wave propagation and fluid-structure interaction. In the present research, transverse vibration of nano fluid conveying carbon nanotubes is investigated. To this end, based on the nonlocal and strain-inertia gradient continuum elasticity theories and by using rod and Euler-Bernoulli beam models, the system’s d...
متن کاملPreservation of Stochastic Orderings of Interdependent Series and Parallel Systems by Componentwise Switching to Exponentiated Models
This paper discusses the preservation of some stochastic orders between two interdependent series and parallel systems when the survival and distribution functions of all components switch to the exponentiated model. For the series systems, the likelihood ratio, hazard rate, usual, aging faster, aging intensity, convex transform, star, superadditive and dispersive orderings, and for the paralle...
متن کاملThe Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...
متن کامل